Permutations

Calculate the permutations: 4P2 x 6P3

Hint
The number of different permutations of "n" distinct objects taken "r" at a time is:
$$$P_{(n,r)}=\frac{n!}{(n-r)!}$$$
Hint 2
Permutation format: $$nPr$$
The number of different permutations of "n" distinct objects taken "r" at a time is:
$$$P_{(n,r)}=\frac{n!}{(n-r)!}$$$
Solving the first permutation:
$$$P_{(4,2)}=\frac{4!}{(4-2)!}=\frac{4!}{2!}=\frac{4\cdot 3\cdot 2!}{2!}=12$$$
Solving the second permutation:
$$$P_{(6,3)}=\frac{6!}{(6-3)!}=\frac{6!}{3!}=\frac{6\cdot 5\cdot 4\cdot  3!}{3!}=120$$$
Multiplying the two permutations together:
$$$12\times 120=1,440$$$
1,440