Triple Permutation
Calculate the permutations: 5P1 x 10P3 x 4P2
Expand Hint
The number of different permutations of "n" distinct objects taken "r" at a time is:
$$$P_{(n,r)}=\frac{n!}{(n-r)!}$$$
Hint 2
Permutation format:
$$nPr$$
The number of different permutations of "n" distinct objects taken "r" at a time is:
$$$P_{(n,r)}=\frac{n!}{(n-r)!}$$$
Solving the first permutation:
$$$P_{(5,1)}=\frac{5!}{(5-1)!}=\frac{5!}{4!}=\frac{5\cdot 4!}{4!}=5$$$
Solving the second permutation:
$$$P_{(10,3)}=\frac{10!}{(10-3)!}=\frac{10!}{7!}=\frac{10\cdot 9 \cdot 8 \cdot 7!}{7!}=720$$$
Solving the third permutation:
$$$P_{(4,2)}=\frac{4!}{(4-2)!}=\frac{4!}{2!}=\frac{4\cdot 3\cdot 2!}{2!}=12$$$
Multiplying the three permutations together:
$$$5 \times 720 \times 12=43,200$$$
43,200
Time Analysis
See how quickly you looked at the hint, solution, and answer. This is important for making sure you will finish the FE Exam in time.- Hint: Not clicked
- Solution: Not clicked
- Answer: Not clicked
Similar Problems from FE Sub Section: Permutation
130. Pen Arrangements
133. Permutations
209. A Permutation
246. Permutation
571. Perm
629. Alphabet
Similar Problems from FE Section: Permutations and Combinations
130. Pen Arrangements
133. Permutations
209. A Permutation
246. Permutation
281. Coin Toss
290. Team Organization
391. Combination
558. Triple Combination
571. Perm
615. Delivery Routes
629. Alphabet