Parallel Line

If a straight line passes through point (1, 0) and is parallel to y=x, what is its equation?

Expand Hint
The standard form of an equation, which is also known as slope-intercept form:
$$$y=mx+b$$$
where $$m$$ is the slope and $$b$$ is the line’s intersection along the y-axis.
Hint 2
Slopes of perpendicular lines are the negative reciprocals of each other. Parallel lines have identical slopes.
The standard form of an equation, which is also known as slope-intercept form:
$$$y=mx+b$$$
where $$m$$ is the slope and $$b$$ is the line’s intersection along the y-axis.

In the given parallel line, $$y=x$$ , the slope is 1. Slopes of parallel lines have identical slopes, meaning the unknown straight line has a slope of 1. The starting equation:
$$$y=(1)x+b$$$
Because the unknown equation passes through the point (1, 0), let’s substitute those coordinates:
$$$0=(1)(1)+b$$$
Solving for $$b$$ :
$$$b=-(1)(1)=-1$$$
Because the point where the straight line passes through the y-axis is now known, the final equation is:
$$$y=x-1$$$
$$$y=x-1$$$
Time Analysis See how quickly you looked at the hint, solution, and answer. This is important for making sure you will finish the FE Exam in time.
  • Hint: Not clicked
  • Solution: Not clicked
  • Answer: Not clicked


Similar Problems from FE Section: Straight Line
128. Straight Line Equation
131. Two Lines
395. Slope Intercept
396. Point-slope
517. Straight Line
572. Line Relationship