Vector Combinations

Consider the two vectors shown. First find V + W , then solve for V - W .

Expand Hint
Vector addition is the operation of adding two or more vectors together into a vector sum. The so-called parallelogram law gives the rule for vector addition of two or more vectors.
$$$A+B=(a_x+b_x)\mathbf{i}+(a_y+b_y)\boldsymbol{j}+(a_z+b_z)\boldsymbol{k}$$$
where $$A=a_x\textbf{i}+a_y\textbf{j}+a_z\textbf{k}$$ and $$B=b_x\textbf{i}+b_y\textbf{j}+b_z\textbf{k}$$ .
Hint 2
Vector subtraction is the operation of subtracting one vector from another.
$$$A-B=(a_x-b_x)\mathbf{i}+(a_y-b_y)\boldsymbol{j}+(a_z-b_z)\boldsymbol{k}$$$
Vector addition is the operation of adding two or more vectors together into a vector sum. The so-called parallelogram law gives the rule for vector addition of two or more vectors.
$$$A+B=(a_x+b_x)\mathbf{i}+(a_y+b_y)\boldsymbol{j}+(a_z+b_z)\boldsymbol{k}$$$
where $$A=a_x\textbf{i}+a_y\textbf{j}+a_z\textbf{k}$$ and $$B=b_x\textbf{i}+b_y\textbf{j}+b_z\textbf{k}$$ . Thus,
$$$V+W=(2+7)\mathbf{i}+(-3+1)\boldsymbol{j}+(5-9)\boldsymbol{k}$$$
$$$=9\mathbf{i}-2\boldsymbol{j}-4\boldsymbol{k}$$$
Vector subtraction is the operation of subtracting one vector from another.
$$$A-B=(a_x-b_x)\mathbf{i}+(a_y-b_y)\boldsymbol{j}+(a_z-b_z)\boldsymbol{k}$$$
Thus,
$$$V-W=(2-7)\mathbf{i}+(-3-1)\boldsymbol{j}+(5-(-9))\boldsymbol{k}$$$
$$$=-5\mathbf{i}-4\boldsymbol{j}+14\boldsymbol{k}$$$
  1. $$V+W=9\mathbf{i}-2\boldsymbol{j}-4\boldsymbol{k}$$
  2. $$V-W=-5\mathbf{i}-4\boldsymbol{j}+14\boldsymbol{k}$$
Time Analysis See how quickly you looked at the hint, solution, and answer. This is important for making sure you will finish the FE Exam in time.
  • Hint: Not clicked
  • Solution: Not clicked
  • Answer: Not clicked

Similar Problems from FE Sub Section: Vectors
049. Cross Products
050. Unit Vectors
306. Dot Product
419. Dot Prod
424. Vector Dot Product
535. X Product
543. Cross vs Dot Product
546. Vector Unit

Similar Problems from FE Section: Determinants
049. Cross Products
050. Unit Vectors
123. Matrix Determinant
251. Matrix
252. Larger Determinant
256. 4x4 Matrix
306. Dot Product
419. Dot Prod
424. Vector Dot Product
447. 3x3 Matrix
503. Determinant Matrix
504. 3x3 Determinant
535. X Product
543. Cross vs Dot Product
546. Vector Unit
633. 2x2 Matrix