Quadratic Equation

Find a positive value for x which satisfies the following equation:

Hint
Quadratic Equation Formula:
$$$x_1,x_2=\frac{-b\pm \sqrt{b^{2}-4\cdot a\cdot c}}{2a}$$$
Hint 2
Quadratic Equation Form:
$$$ax^2+bx+c=0$$$
Quadratic Equation Formula:
$$$x_1,x_2=\frac{-b\pm \sqrt{b^{2}-4\cdot a\cdot c}}{2a}$$$
Quadratic Equation Form:
$$$ax^2+bx+c=0$$$
Thus,
$$$x_1,x_2=\frac{-100\pm \sqrt{100^{2}-4\cdot 50\cdot (-5)}}{2(50)}$$$
$$$x_1,x_2=\frac{-100\pm \sqrt{10,000-(-1,000)}}{100}$$$
$$$x_1,x_2=\frac{(-100\pm 104.88)}{100}$$$
Next,
$$$x_1=\frac{(-100+ 104.88)}{100}=\frac{4.88}{100}=0.0488$$$
$$$x_2=\frac{(-100- 104.88)}{100}=\frac{-204.88}{100}=-2.0488$$$
Because $$x_1$$ is the only positive value, 0.0488 is the answer.
0.0488