Beam AB

Beam AB, which is simply supported at Points A & B, is subjected to a distributed load as shown. If the beam’s weight is negligible, what is the reaction force at Point B?

Expand Hint
Draw the free body diagram:
Hint 2
Take the moment about Point A to reduce the amount of unknown forces.
$$$\sum M_A=0=Force \times Distance$$$
First, draw the free body diagram:
The triangular force distribution can be replaced with a concentrated force $$F$$ , which is located through the triangle’s centroid. The force’s magnitude is equal to the triangle’s area:
$$$F=\frac{1}{2}bh=\frac{1}{2}(12m)(200N/m)=1,200\:N$$$
where $$b$$ is the triangle’s base, and $$h$$ is the triangle’s height.
We can take the moment about Point A to reduce our unknown variables down to 1 ( $$A_x$$ , $$B_x$$ and $$R_A$$ will zero out since their radius vector goes through Point A). Remember, $$Moment=Force \times Distance$$ :
$$$\sum M_A=0=(18m)R_B-(14m)F$$$
$$$(18m)R_B=(14m)(1,200N)$$$
$$$R_B=\frac{(14m)(1,200N)}{18m}=\frac{16,800N}{18}=933\:N$$$
933 N
Time Analysis See how quickly you looked at the hint, solution, and answer. This is important for making sure you will finish the FE Exam in time.
  • Hint: Not clicked
  • Solution: Not clicked
  • Answer: Not clicked

Similar Problems from FE Sub Section: Force
055. Free Body Diagram
164. Pulleys
193. Tensional Force
304. Vertical Force
310. Simply Supported
369. A Beam
380. Reaction Point
449. Tire Swing
656. Beam
Similar Problems from FE Sub Section: Moment
304. Vertical Force
310. Simply Supported
369. A Beam
380. Reaction Point
656. Beam

Similar Problems from FE Section: Force
055. Free Body Diagram
145. Force Characteristics
164. Pulleys
193. Tensional Force
304. Vertical Force
310. Simply Supported
369. A Beam
380. Reaction Point
449. Tire Swing
656. Beam
Similar Problems from FE Section: Moments (Couples)
047. Stop at the Sign
304. Vertical Force
310. Simply Supported
369. A Beam
380. Reaction Point
499. Torque Units
656. Beam