Integrals
Calculate the indefinite integral of (x^4)-(x^2)+2
Expand Hint
$$$\int x^n \:dx=\frac{x^{n+1}}{n+1}$$$
Hint 2
This is a calculus problem, and can be written as:
$$$\int (x^4-x^2+2)dx=\int (x^4)dx-\int (x^2)dx+2\int (1)dx$$$
This is a calculus problem, and can be written as:
$$$\int (x^4-x^2+2)dx=\int (x^4)dx-\int (x^2)dx+2\int (1)dx$$$
Applying the power rule to the first section of the integral:
$$$\int x^n \:dx=\frac{x^{n+1}}{n+1}\:with\:n=4\rightarrow \int (x^4)\:dx=\frac{x^{5}}{5}$$$
Applying the power rule to the second section of the integral:
$$$\int x^n \:dx=\frac{x^{n+1}}{n+1}\:with\:n=2\rightarrow \int (x^2)\:dx=\frac{x^{3}}{3}$$$
Applying the constant rule to the third section of the integral:
$$$\int (1)dx=x$$$
Finally,
$$$\int (x^4)dx-\int (x^2)dx+2\int (1)dx$$$
$$$=\frac{x^5}{5}-\frac{x^3}{3}+2x+C$$$
$$$\frac{x^5}{5}-\frac{x^3}{3}+2x+C$$$
Time Analysis
See how quickly you looked at the hint, solution, and answer. This is important for making sure you will finish the FE Exam in time.- Hint: Not clicked
- Solution: Not clicked
- Answer: Not clicked
Similar Problems from FE Sub Section: Integral Calculus
043. A Calc Question
044. Definite Integrals
077. Area Under a Curve
308. Definite Integral
353. Inflections
408. Triple Integrals
416. Trip Integral
430. A Curve’s Area
643. Integral Finding
Similar Problems from FE Section: Differential Calculus
043. A Calc Question
044. Definite Integrals
048. Derivative
051. 2nd Derivatives
077. Area Under a Curve
078. Derivatives
122. Roller Coasters
158. A Train's Velocity
308. Definite Integral
312. The Derivative
342. Inflection Point
353. Inflections
355. Multi Roots
394. Acceleration
408. Triple Integrals
412. Hill Bomb
416. Trip Integral
430. A Curve’s Area
643. Integral Finding
650. Differentiate