Integrals

Calculate the indefinite integral of (x^4)-(x^2)+2

Expand Hint
$$$\int x^n \:dx=\frac{x^{n+1}}{n+1}$$$
Hint 2
This is a calculus problem, and can be written as:
$$$\int (x^4-x^2+2)dx=\int (x^4)dx-\int (x^2)dx+2\int (1)dx$$$
This is a calculus problem, and can be written as:
$$$\int (x^4-x^2+2)dx=\int (x^4)dx-\int (x^2)dx+2\int (1)dx$$$
Applying the power rule to the first section of the integral:
$$$\int x^n \:dx=\frac{x^{n+1}}{n+1}\:with\:n=4\rightarrow \int (x^4)\:dx=\frac{x^{5}}{5}$$$
Applying the power rule to the second section of the integral:
$$$\int x^n \:dx=\frac{x^{n+1}}{n+1}\:with\:n=2\rightarrow \int (x^2)\:dx=\frac{x^{3}}{3}$$$
Applying the constant rule to the third section of the integral:
$$$\int (1)dx=x$$$
Finally,
$$$\int (x^4)dx-\int (x^2)dx+2\int (1)dx$$$
$$$=\frac{x^5}{5}-\frac{x^3}{3}+2x+C$$$
$$$\frac{x^5}{5}-\frac{x^3}{3}+2x+C$$$