Trip Integral
Evaluate the shown triple integral where B = {(x,y,z) | -1 ≤ x ≤ 1, 0 ≤ y ≤ 2, 1 ≤ z ≤ 3}.
Expand Hint
The integration order is not specified, but we can use the iterated integral in any order without changing the difficulty.
Hint 2
$$$\int x^n \:dx=\frac{x^{n+1}}{n+1}$$$
The integration order is not specified, but we can use the iterated integral in any order without changing the difficulty. Let’s arbitrarily integrate
$$y$$
first, then
$$x$$
, and then finally
$$z$$
.
Recall the power rule:
$$$\int x^n \:dx=\frac{x^{n+1}}{n+1}$$$
Integrate with respect to
$$y$$
:
$$$\int_1^3 \int_{-1}^1 \int_0^2 x^3yz^2\:dy\, dx\, dz$$$
$$$=\int_1^3 \int_{-1}^1 \frac{x^3y^2z^2}{2}\bigg\rvert_{y=0}^{y=2}\: dx\, dz=\int_1^3 \int_{-1}^1\frac{x^32^2z^2}{2}-0\: dx\, dz=\int_1^3 \int_{-1}^12x^3z^2\: dx\, dz$$$
Integrate with respect to
$$x$$
:
$$$=\int_1^3 \frac{ 2x^4z^2}{4}\bigg\rvert_{x=-1}^{x=1}\: dz=\int_1^3 \frac{(1)^4z^2}{2}-\frac{(-1)^4z^2}{2}\: dz$$$
$$$=\int_1^3 \frac{z^2}{2}-\frac{z^2}{2}\: dz=\int_1^3 0\: dz=0$$$
0
Time Analysis
See how quickly you looked at the hint, solution, and answer. This is important for making sure you will finish the FE Exam in time.- Hint: Not clicked
- Solution: Not clicked
- Answer: Not clicked
Similar Problems from FE Sub Section: Integral Calculus
040. Integrals
043. A Calc Question
044. Definite Integrals
077. Area Under a Curve
308. Definite Integral
353. Inflections
408. Triple Integrals
430. A Curve’s Area
643. Integral Finding
Similar Problems from FE Sub Section: Indefinite Integrals
077. Area Under a Curve
308. Definite Integral
408. Triple Integrals
430. A Curve’s Area
643. Integral Finding
Similar Problems from FE Section: Differential Calculus
040. Integrals
043. A Calc Question
044. Definite Integrals
048. Derivative
051. 2nd Derivatives
077. Area Under a Curve
078. Derivatives
122. Roller Coasters
158. A Train's Velocity
308. Definite Integral
312. The Derivative
342. Inflection Point
353. Inflections
355. Multi Roots
394. Acceleration
408. Triple Integrals
412. Hill Bomb
430. A Curve’s Area
643. Integral Finding
650. Differentiate