Integral Finding
Solve the integral:
Expand Hint
$$$\int(3x^3+4x-5)dx=\int (3x^2)dx+\int (4x)dx-\int (5)dx$$$
Hint 2
$$$\int x^n \:dx=\frac{x^{n+1}}{n+1}$$$
This is a calculus problem, and can be written as:
$$$\int(3x^3+4x-5)dx=\int (3x^2)dx+\int (4x)dx-\int (5)dx$$$
The power rule:
$$$\int x^n \:dx=\frac{x^{n+1}}{n+1}$$$
Using the power rule to solve the problem’s integral:
$$$\int3x^3+4x-5)dx=\frac{3x^{(3+1)}}{(3+1)}+\frac{4x^{(1+1)}}{(1+1)}-5x$$$
$$$=\frac{3x^{4}}{4}+2x^2-5x$$$
Next, solve using the upper integral boundary of 1, and lower integral limit of -2:
$$$=\frac{3(1)^{4}}{4}+2(1)^2-5(1)-[\frac{3(-2)^{4}}{4}+2(-2)^2-5(-2)]$$$
$$$=\frac{3}{4}+2-5-[\frac{3(16)}{4}+2(4)+10]$$$
$$$=\frac{3}{4}+2-5-12-8-10=-32.25$$$
-32.25
Time Analysis
See how quickly you looked at the hint, solution, and answer. This is important for making sure you will finish the FE Exam in time.- Hint: Not clicked
- Solution: Not clicked
- Answer: Not clicked
Similar Problems from FE Sub Section: Integral Calculus
040. Integrals
043. A Calc Question
044. Definite Integrals
077. Area Under a Curve
308. Definite Integral
353. Inflections
408. Triple Integrals
416. Trip Integral
430. A Curve’s Area
Similar Problems from FE Sub Section: Indefinite Integrals
077. Area Under a Curve
308. Definite Integral
408. Triple Integrals
416. Trip Integral
430. A Curve’s Area
Similar Problems from FE Section: Differential Calculus
040. Integrals
043. A Calc Question
044. Definite Integrals
048. Derivative
051. 2nd Derivatives
077. Area Under a Curve
078. Derivatives
122. Roller Coasters
158. A Train's Velocity
308. Definite Integral
312. The Derivative
342. Inflection Point
353. Inflections
355. Multi Roots
394. Acceleration
408. Triple Integrals
412. Hill Bomb
416. Trip Integral
430. A Curve’s Area
650. Differentiate